Integration of High Performance Robust Lateral DMOS Devices in Advanced Smart Power BCD Platform

R. Depetro¹, G. Croce¹, P. Galbiati¹, A. Tallarico², S. Reggiani², F. Giuliano², C. Fiegna²

¹ Technology R&D, STMicroelectronics, Agrate Brianza, Italy ² ARCES-DEI, University of Bologna, Cesena, Italy

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA ARCES

- History and evolution
- Where and what robustness count
- How (to try) to address problems ...
- Examples
- Conclusions

OUTLINE 3

History and evolution

- Where and what robustness count
- How (to try) to address problems...
- Examples
- Conclusions

BCD Technology Segmentation 4

SEGMENT	EGMENT TECHNOLOGY PLATFORM		APPLICATION FIELDS			
High Voltage BCD		BCD6s Offline 3.3V / 5V CMOS – 25V/800V/1200V	Lighting	المسلم ال	Electrical Car	
	0.32µm	BCD6s HV Transformer 3.3V CMOS - Galvanic Isolation 4-6KV		Motors		
SOI BCD		SOI-BCD6s 3.3V CMOS - 20V/50V/100V/190V	レゴ)) Full digital amplifier	5	AMOLED	Pico-projector
		SOI-BCD8s 1.8V CMOS - 70V/100V/140V/200V		Echography		
Advanced BCD	0.16µm	BCD8sP - 0.16μm 1.8V CMOS - 10V/18V/27V/42V/60V	HDD	Airbag		Audio amplifier
		BCD8sAUTO - 0.16μm 3.3V CMOS - 20V/40V/65V/100V				
	0.11µm	BCD9s - 0.11μm 1.8V CMOS - 10V/40V/60V	Printers	Po m	ower Line nodems	
		BCD9sL - 0.11μm 3.3V CMOS - 20V/40V/65V/100V				
		BCD9sE - 0.11μm – ePCM 1.8V CMOS - 10V/40V/60V			ESP	
	90nm	BCD10 - 90nm - ePCM 1.2V CMOS - 8V/20V/40V/65V	Power Supply	Automotive		Power Management for Mobile

What Does This Evolution Mean?

2x Half-bridges

BCD9s e-PCM 110nm **1** Million Transistors

4x Half-Bridges 8x 40V gate drivers ARM Cortex-M4 32KB ePCM and 8KB RAM 2x DACs and 1x ADC

Robustness in the Integration

How to Continue to Improve on HV Devices

Tapered oxide usage evolution from BCD I to BCD 10

OUTLINE 10

- History and evolution
- Where and what robustness count
- How (to try) to address problems...
- Examples
- Conclusions

Double RESURF Exploitation 11

Safe Operating Area and Body Doping 12

Having Wide SOA

S. Reggiani et al., IEEE TED 2009

lines: simulations; symbols: experiments

Having Wide SOA

ARCES

What is Degrading 15

LDMOS device working condition is generally limited by degradation of

- \succ Maximum linear current ($|\Delta I_{d,lin}| = \Delta R_{on}$) for high V_{DS} and low V_{GS} (standard working conditions in switching applications)
- \succ Threshold voltage (ΔV_{t}) for high V_{DS} and high V_{GS} (more related to spikes)

When Degradation Occurs

• HC degradation in a real application: Switching phase

OUTLINE 17

- History and evolution
- Where and what robustness count
- How (to try) to address problems...
- Examples
- Conclusions

The Design Tool-kit for the Total SOA

- Technology Computer Aided Design (TCAD) commercial tools for process and device simulations
- Device simulation approach
- 2D domain
- Poisson + drift-diffusion transport equations
- Impact-ionization accurate model
- ... But TCAD is now helpful to quantitatively predict the HCS (Hot Carriers Stress) degradation induced by defects generated at the Si/SiO2 interface!
- HCS degradation model

HCS Degradation Analysis on the Localization

- 1. Trap formation in the channel $\rightarrow V_T$ shift (ΔV_T in R_{ch})
- 2. Trap formation in the channel
 → effective mobility reduction (Δμ_{eff} in R_{ch})
- 3. Trap formation in the drift \rightarrow drift resistance increase (ΔR_{STI} and ΔR_{drift})

The different dependences on V_{GS} are used to check the localization of degradation.

Degradation Along Turn-on Sweep

$\Delta \mu_{\rm eff}(t)$

S. Reggiani et al., IEEE TED 2011

S. Reggiani et al., IEEE TED 2011

0.16

Kinetic Equations of the **Trap Generation: 1**

23

Single-particle process (SP)
P_{SP}: probability for SP
generation

$$k_{SP}(r, E_{SP}) = \int f(r, E)g(E)v(E)\sigma_{SP}(E)dE$$

 $f(r, E)$ - distribution function
 $g(E)$ - density of states $v(E)$ - group velocity
3.1eV [S. Tyaginov, MR 2010;
K. Hess et al., IEDM 2000]
 $\sigma_{SP}(E) = \sigma_{SP0} \left(\frac{E - E_{SP}}{k_BT}\right)^{p_{SP}}$
 $\sigma_{SP}(E) = \sigma_{SP0} \left(\frac{E - E_{SP}}{k_BT}\right)^{p_{SP}}$
Cross-section models the electronic excitation, the expected parentine to b. Twee added

 σ_{SP0} : fitting parameter

ARCES

electronic excitation, the expected normalization to k_BT was added S. Reggiani, TED 2013]

Kinetic Equations of the Trap Generation: 2

$$N_{\rm it,MP}(\mathbf{r}, t, E_{\rm MP}) = P_{\rm MP} N_0 \left[\frac{P_{\rm emi}}{P_{\rm pass}} \left(\frac{P_{\rm u}}{P_{\rm d}} \right)^{N_1} (1 - e^{-P_{\rm emi}t}) \right]^{1/2}$$

Fitting parameters

- P_{MP}: probability for MP generation
 v_{emi/pass}: emission/passivation frequency;
- E_{pass}: passivation energy

ARCES

Excitation induced by incoming electrons (multiple-vibrational electron-phonon interaction) $_{\infty}$

$$k_{\rm MP}(\mathbf{r}, E_{\rm MP}) = \int_{E_{\rm MP}} f(\mathbf{r}, E)g(E)v(E)\sigma_{\rm MP}(E)dE$$

$$E_{\rm ph}=0,25 \text{ eV} [I.A. \text{ Starkov et al., J. Vac. Sci. Technol. B, 2011}]$$

$$\sigma_{\rm MP0}: \text{ fitting parameter}$$

$$\sigma_{\rm MP0}: fitting parameter$$

$$\sigma_{\rm MP0}: fitting parameter$$

Kinetic Equations of the Trap Generation: 3

Thermally-activated dielectric degradation (TH)

$$N_{\text{it,TH}}(\mathbf{r}, t, E_{\text{TH}}) = P_{\text{TH}}N_0[1 - e^{-k_{\text{TH}}(E_{\text{TH}})t}] \iff [\text{S. Reggiani, TED 2013}]$$

P_{MP}: probability for TH generation

$$k_{\rm TH}(E_{\rm TH}) = \nu_{\rm TH} \exp\left[-\frac{E_{\rm TH}}{k_B T}\right]$$

 ν_{TH} : lattice collision frequency

J.W. McPherson et al., J. Appl. Phys. 88, 2000

TCAD implementation

The physics-based models for the reaction rates need a semiclassical transport solution → numerical solution of the full-band Boltzmann Transport Equation (BTE) for the determination of the electron distribution function

... implemented in TCAD!

 Deterministic solution the sphericalharmonics expansion of the BTE

Accurate description of f(x,y,E) up to 10 eV

26

 Full-band structure obtained from the nonlocal empirical pseudopotential method.

S. Jin et al.(SISPAD 2009) - implemented in SDevice-Synopsys

OUTLINE 27

- History and evolution
- Where and what robustness count
- How (to try) to address problems ...
- Examples
- Conclusions

HC Degradation (TCAD)

• Single- and Multiple-particle processes accounted for in the simulation

ARCES

- Experimental ΔR_{ON} and its gate bias dependence are reproduced by means of TCAD simulation
- Model calibration (SP and MP) is required to better fit the short stress times

Electron Density Distribution (LOCOS vs STI)

 A higher number of electrons may lead to higher number of interface traps in the STI structure due to multiple-particle process

• Single-particle may be worse in LOCOS

ARCES

Ο

С

0

S

Electron Current Density

STI

-3.046e-08

-2.417e+04

30

Selective LOCOS

interface of the STI architecture particle process.

Different Models Account for Different Architectures

- Single particle model seems more valid for previous generation architectures
- Multi particle model better fits with STI based architectures due to current closer confinement to the surface

A. Tallarico et al., JEDS 2018

Is the Methodology Always Valid? 32

Can the tool be used also other components?

Parameters work for both carriers?

PLDMOS Structures 33

PCH structures must be considered

HV p-channel LDMOS

□ STI oxide structure

Gate, body and drain currents analyzed

Hole Avalanche Coefficient

Reduction of the hole avalance coefficient of about a factor 4 needed to reproduce the avalanche regime

↓

Parameters extrapolated from older technologies are no longer accurate for new generation technologies

F. Giuliano et al., ESSDERC 2019

Body Current - PLDMOS

0

Ω

2

 $V_{GS}(V)$

3

4

5

35

Impact ionization peak at V_{GS} about 2V Body current decrease due to the reduction of the electric field

F. Giuliano et al., ESSDERC 2019

Conclusions

- An overview on some strategies to improve devices optimization devices robustness in mixed signal technologies was presented
- New and future technology process nodes must face the emerging of more stringent limitations in device operation due to the geometrical squizing
- TCAD tools will play a key role in trying to predict and help the device optimization going forward the classical breakdown and R_{on} optimization and speeding up the development phase

This work supported by: ECSEL 2014-2-653933: R2POWER300 and H2020-EU ECSEL_737417: R3-PowerUP

Thank you for your attention

