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Introduction and motivations 
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BCD gate oxide reliability: Hot-carrier injection in the gate oxide of high-voltage 

MOSFETs is a complicated issue

TCAD prediction as a tool for technology support

Open issues: new-generation technologies feature the nitrogen-monoxide 

annealing at the Si/SiO2 and larger electric fields in the channel

Analysis of the model accuracy:

1. Boltzmann Transport Equation solution in the frame of the 

Spherical Harmonics Expansion method (SHE-BTE) 

2. Gate-current model parameters



Test structures
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Conventional nMOS with 

additional emitter region

to control the hot-electron 

injection into the body
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 VB=0 ÷-5 V

 IE= -100 A

 IC, IB and IG are monitored    Pinj = IG / IC 
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Injection probability: new vs. old experiments
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Ning model: 
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TCAD study: the SHE-BTE solution
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SHE-BTE microscopic scattering rates (bulk silicon):

SHE-BTE solution using the silicon full-band structure:

Deterministic solution through the spherical-harmonics expansion of the BTE:

• lowest order expansion nicely compares with high-order results at high fields 

 Full-band structure obtained from the nonlocal empirical pseudopotential method:

• up to the fourth band starting at  3.23 eV



Modeling approach: the microscopic rates
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The phonon-scattering rate nicely compares with Monte Carlo data up to 5 eV

The reported ii-scattering rates have been demonstrated to give ii-coefficient, ii-

quantum yield and soft X-ray photoemission spectroscopy new fitting  



Electron distribution functions
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TCAD study: the gate-current model
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SHE-Distribution Hot-Carrier Injection (S. Jin et al., 2009)

2) Tunneling probability: 

WKB approximation 

taking into account the 

parallel momentum 

conservation 

1) Microscopic current density 

calculated at the Si/SiO2

interface using the SHE-

BTE distribution function

EB with image-potential 

barrier lowering 

mins spherical band 

approximation for SiO2



TCAD study: the gate-current model
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SHE-Distribution Hot-Carrier Injection (S. Jin et al., 2009)

Pins= exp (-r0/λins) 

r0 is the distance from the interface to the barrier peak, 

λins is the mean free path in the insulator

3) Effect of scattering 

in the SiO2 barrier:

r0



Injection probability: TCAD results
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Very nice agreement for the tunneling component @low |VB|, high VG

Very nice agreement for the hot-carrier injection @high |VB|, high VG

r0
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Injection probability: the role of barrier lowering
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The observed slope of hot-electron injection is too weak to be 

explained through a Schottky barrier lowering effect:

VB= -1 V

-3 V

-5 V

Experiments

TCAD with barrier 
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Ning data: 

• No thermal nitridation  lower scattering rate at the SiO2 barrier: λins=2 nm

Injection probability: old experiments

Nice agreement without barrier lowering
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Diode breakdown: role of the DLC passivation
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Ning data: 

• No thermal nitridation  lower scattering rate at the SiO2 barrier: λins=2 nm;

• lower doping  smaller electric field; 

• thicker tox  smaller tunnelling;
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Conclusions

• The hot-electron injection model presently available in the TCAD 

tool has been investigated:

–Predictability in the context of new-generation BCD technologies. 

–Electron emission extended to very high electric fields as 

expected in power LDMOS devices at the onset of avalanche 

breakdown. 

• The TCAD analysis clearly showed that the new Si/SiO2 interfaces 

experience different features with respect to the old ones, but it can 

accurately capture the relevant features of electron injection.
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