





#### Hot-Carrier Degradation in New Generation Power LDMOS: LOCOS- vs. STI-based Architecture

**A. N. Tallarico**<sup>1</sup>, S. Reggiani<sup>2</sup>, R. Depetro<sup>3</sup>, G. Croce<sup>3</sup>, E. Sangiorgi<sup>1</sup>, C. Fiegna<sup>1</sup>

<sup>1</sup>ARCES and DEI, Università di Bologna, Cesena, Italia <sup>2</sup>ARCES and DEI, Università di Bologna, Bologna, Italia <sup>3</sup>Technology R&D, STMicroelectronics, Agrate Brianza, Italia

50th Annual Meeting of SIE, Naples, 20-22 June, 2018

### Outline

#### Introduction

> When hot-carrier degradation occurs in a real application

#### Devices description

- LOCOS vs. STI LDMOS transistors
- Review of the Hot-Carrier Stress (HCS) degradation model
- Results and Discussion
- Conclusions



### Introduction

• HC degradation in a real application: Switching phase



High to Low transition

Low to High transition

### Outline

#### > Introduction

> When hot-carrier degradation occurs in a real application

#### Devices description

LOCOS vs. STI LDMOS transistors

# Review of the Hot-Carrier Stress (HCS) degradation model

#### Results and Discussion

#### Conclusions



## LDMOS structure: LOCOS vs STI

➤ N-drift LDMOS integrated in BCD technology

- > 200mm-wafer by STMicroelectronics
- ➤ Same Class voltage: 18 V
- ➤ Similar On-resistance: 8÷9 mΩ·mm<sup>2</sup>
- ➤ Different threshold voltage: 0.85 V (LOCOS) and 1.4 V (STI)





## Purpose of this Work

- To experimentally investigate the hot-carrier degradation (HCD) in both LDMOS architectures
- To reproduce HCD by means of TCAD simulation
- To understand the main degradation mechanisms
- > To localize the interface trap generation



### Outline

#### > Introduction

> When hot-carrier degradation occurs in a real application

#### > Devices description

LOCOS vs. STI LDMOS transistors

# Review of the Hot-Carrier Stress (HCS) degradation model

#### Results and Discussion

#### Conclusions



## **HCS Degradation Model**

- TCAD model developed by S. Reggiani [1] and implemented in Sentaurus simulator [2] from 2016 version
- Different bond breakage mechanisms are included:
   Single-particle (SP), where a single hot particle is responsible;
  - Multiple-particle (MP), where several colder carriers impinging the interface are responsible;
  - Field-enhanced thermal (TH), where thermal interactions with the lattice are responsible.

[1] S. Reggiani, et al., T-ED, Vol. 60, No. 2, pp. 691-698, Feb. 2013
[2] Sentaurus-Device U.G. v. L-2016.03, Synopsys Inc., 2016



### Outline

#### > Introduction

> When hot-carrier degradation occurs in a real application

#### > Devices description

- LOCOS vs. STI LDMOS transistors
- Review of the Hot-Carrier Stress (HCS) degradation model

#### Results and Discussion





### **Device Calibration**

TCAD calibration has been performed in order to reliably investigate the HC degradation



Transfer, output, and off-state (not shown) characteristics accurately reproduced.



## **Identifying Hot Carrier Conditions**



Impact Ionization (cm<sup>-3</sup>s<sup>-1</sup>)

- Body current monitoring because of its correlation with the impact ionization (ii) generation;
- By increasing V<sub>GS</sub> the ii peak moves towards the drain; I<sub>B</sub> increases again due to Kirk effect;
- Same behavior observed in the STI structure (not shown);
- > STI structure features a lower ii at relatively low  $V_{GS}$ ;



UNIVERSITÀ DI BOLOGNA Campus di Cesena

## Body Current vs R<sub>ON</sub> Degradation



- R<sub>ON</sub> degradation perfectly follows body current in LOCOS devices
  - Single-particle process is the dominant degradation mechanism.
- No correlation in the case of STI devices
- Different degradation mechanisms occur in the two structures



# **R**<sub>ON</sub> Degradation (TCAD)



Single-particle process is the only enabled degradation mechanism in the HCS model

Both single- and multiple-particle processes must be taken into account to reproduce experimental R<sub>ON</sub> degradation



[4] A. N. Tallarico et al., IEEE JEDS, Vol. 6, no. 1, pp. 219-226, Jan. 2018

## Where Degradation is Localized





- At relatively low gate voltages, both devices show a higher trap generation at the source-side of the LOCOS/STI
- > By increasing the gate voltage:
  - Interface trap generation in LOCOS follows the impact ionization peak, hence moves toward the drain contact;
  - In the case of STI, trap generation is uniformly distributed along the STI interface;



ALMA MATER STUDIORUM Università di Bologna Campus di Cesena

### **Direct Comparison: LOCOS vs STI**



- STI: higher number of cold electrons
- LOCOS: higher number of hot carriers





## **Electron Current Density**

Because of the etched trench (STI) deeper in silicon, the current flows confined at the interface of the STI bottom. As a result, a higher number of colder electrons interact with the molecules at the interface creating traps.





### Outline

#### > Introduction

> When hot-carrier degradation occurs in a real application

#### > Devices description

LOCOS vs. STI LDMOS transistors

# Review of the Hot-Carrier Stress (HCS) degradation model

#### Results and Discussion

#### Conclusions



## Conclusions

- The two LDMOS architectures are affected by different HC degradation mechanisms: Single- and Multiple-particle;
- STI devices suffers from an additional degradation contribution due to multiple-cold-carriers caused by a deeper STI with respect to LOCOS;
- However, a clear reduction of the single highenergetic-carrier (reduced impact-ionization) due to the global result of different doping profiles and geometrical dimensions is attained in STI devices;
- Overall, STI devices are as robust as the LOCOS, guaranteeing same performance.







#### ALMA MATER STUDIORUM Università di Bologna

#### **Acknowledgements:** This work was supported by:

- ECSEL 2014-2-653933: R2POWER300 "Preparing R2 extension to 300mm for BCD Smart Power and Power Discrete"
- ECSEL 2016-2-IA-737417:R3-PowerUP "300mm Pilot Line for Smart Power and Power Discrete"

# Thank you for your attention



### Appendix



### **OFF-State Characteristics:LOCOS**

Accurately reproduced by Sentaurus TCAD
 van Overstraeten-de Man model





### **Body Current vs Impact Ionization**

LOCOS





## **Spatial Interface Trap Distribution**

• By increasing the gate bias the impact ionization peak moves toward the drain creating defects at the silicon/oxide interface





Impact Ionization .10<sup>27</sup> (cm<sup>-3</sup> s<sup>-1</sup>

3

2

### **Temperature Dependence: LOCOS**

- > By increasing the temperature the  $\Delta R_{ON}$  is reduced because of the phonon increase
  - The electron-phonon interactions tend to redistribute electrons from the high-energy tail to lower energies, thus reducing the HCS processes.



#### **Threshold Voltage Degradation: LOCOS**

 $\succ$  Negligible V<sub>TH</sub> degradation is observed





### **HCS Degradation Model: SP**

> Interface trap density generated during hot-carrier

 $\infty$ 

$$N_{\rm it,SP}(\boldsymbol{r}, t, \boldsymbol{E}_{\rm SP}) = P_{\rm SP}N_0 [1 - e^{-k_{\rm SP}(\boldsymbol{r}, \boldsymbol{E}_{\rm SP})t}]$$

 $P_{SP}$ : probability for defect generation  $N_0$ : maximum number of interface bonds  $E_{SP}$ : activation energy for the SP process

> Reaction rate for the SP process is given by the scattering-rate integral

$$k_{\rm SP}(\mathbf{r}, E_{\rm SP}) = \int f(\mathbf{r}, E) g(E) v(E) \sigma_{\rm SP}(E) dE$$

$$E_{\rm SP}$$

$$f(\mathbf{r}, E): \text{ carrier distributed}$$

$$f(\mathbf{r}, E): \text{ corrier distributed}$$

f(r,E): carrier distribution function g(E): total density of states v(E): magnitude of carrier velocity

#### single-particle reaction cross-section

$$\sigma_{\rm SP}(E) = \sigma_{\rm SP0} \left(\frac{E - E_{\rm SP}}{k_{\rm B}T}\right)^{p_{\rm SP}}$$

 $\sigma_{sPO}$ : fitting parameter  $p_{sp}$ : exponent characterizing the SP process

[1] S. Reggiani, et al., T-ED, Vol. 60, No. 2, pp. 691-698, Feb. 2013
[2] Sentaurus-Device U.G. v. L-2016.03, Synopsys Inc., 2016



### **HCS Degradation Model: SP**

Interface trap density generated during hot-carrier

$$N_{\rm it,MP}(\mathbf{r}, t, E_{\rm MP}) = P_{\rm MP} N_0 \left[ \frac{P_{\rm emi}}{P_{\rm pass}} \left( \frac{P_{\rm u}}{P_{\rm d}} \right)^{N_1} (1 - e^{-P_{\rm emi}t}) \right]^{1/2}$$

 $\mathbf{P}_{\mathbf{MP}}$ : probability for defect generation  $\mathbf{N}_1$ : n° of energy levels in the oscillator that models the bond

> Emission and passivation probabilities modelled as Arrhenius law

$$P_{\rm emi} = v_{\rm emi} e^{-E_{\rm emi}/(k_{\rm B}T)}$$

$$P_{\text{pass}} = v_{\text{pass}} e^{-E_{\text{pass}}/(k_{\text{B}}T)}$$

 $\boldsymbol{V}_{emi}$  and  $\boldsymbol{V}_{pass}$  are the emission and passivation frequencies, respectively.

 $\mathbf{E}_{emi}$  and  $\mathbf{E}_{pass}$  are the emission and passivation energies, respectively.

#### > Oscillator excitation and de-excitation probability

$$P_{\rm u} = k_{\rm ph} e^{-E_{\rm ph}/(k_{\rm B}T)} + k_{\rm MP}(r, E_{\rm MP})$$

$$P_{\rm d} = k_{\rm ph} + k_{\rm MP}(r, E_{\rm MP})$$

 ${\bf E}_{{\bf p}{\bf h}}$  and  ${\bf k}_{{\bf p}{\bf h}}$  are the phonon energy and the reaction rate, respectively.

 $\mathbf{E}_{\mathbf{MP}}$  is the activation energy for MP processes.



[1] S. Reggiani, et al., T-ED, Vol. 60, No. 2, pp. 691-698, Feb. 2013
[2] Sentaurus-Device U.G. v. L-2016.03, Synopsys Inc., 2016



ALMA MATER STUDIORUM Università di Bologna Campus di Cesena

#### Andrea Natale Tallarico

ARCES-DEI, Università di Bologna, Cesena, Italia

a.tallarico@unibo.it

https://www.unibo.it/sitoweb/a.tallarico